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Abstract

Error correcting output codes (ECOC) representcaessful extension of binary classifiers to addtkeamulticlass
problem. Lately, the ECOC framework was extendeanfthe binary to the teary case to allow classes to
ignored by a certain classifier, allowing in thisymo increase the number of possible dichotonudset selectec
we show that by a special treatment procedure rafszend adjusting the weights at the rest of cquiestions, the
accuracy of the system can be increased. Besidegxtend the main st-of-art decoding strategies from t
binary to the ternary case, and use two novel ambtrs: Laplacian and Pessimistic Beta Density Pititya
approaches. Our main reseh is to show that the ternary decoding techriqueposed outperform the stand
decoding strategiefn this survey paper, we present an open sourag-Correcting Output Codes (ECOC) libra
The ECOC framework is a powerful tool to deal withlticlass categorization problems. This librarytains bott
state-of-the-art coding (one-versoige, on-versusall, dense random, sparse random, DECOC, -ECOC, and
ECOC-ONE) and decoding designs (hammiEuclidean, inverse hamming, laplacifin.density, attenuated, Ic-
based, probabilistic kernélased, and lo-weighted) with the parameters defined thg authors, as well as t
option to include your own coding, decoding, andebelassifier
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ECOC

The basis of the ECOC framework is to creal
codeword for each of the \lasses. Arranging tr
codewords as rows of a matrix, we define a "coi
matrix" M, where Me {-1, 0, +1}"°*", in the ternan
case, being n the code length. From point of vié o g s e s T
learning, M is constructed by considerirn binary o
problems (dichotomies), each corresponding t ;’j
matrix column. Joining classes in sets, €

dichotomy defines a partition of classecoded by —>X
+1, 0 or 4, according to their class set memberst Figure. 1. Example of ternary matrix M for -class

In fig. 1 we show an example of a ternary matrix problem. A new test codeword is misclassified duthe
The matrix is coded using 7 dichotomies hi,..., confusion of using the tditional decoding strategit
for a four multiclass problem {cc,, cs, and g). The )

white regions are coded by 1 (catesied as positiv The ErrorCorrecting Output Codes (ECO

M, and the data point is assigned to the class th!
"closest" codeword.

Traditional decoding

HD(Xep) =[1]  ED (Xep) =[4]
HD(Xc;) =52 ED(Xex)=5
HD(Xe3)=6  ED(Xez) =12
HD(Xcq)=4  ED(Xcq) =14

Correct decoding- €2

for its respective dichotomy, hi), the dark regidys-
1 (considered as negative), and the grey rec
correspond to the zero symbol (not considered e&
for the current dichotomy). For example, the f
classifier is trained to discriminatg wersus ; and ¢,
the second one classifies wersus ¢ c; and g, and
so on. Applying the n trained binary classifiers
code is obtained for each data point in the test
This code is compared to the basedeword of
each class defined in the matrix

framework [9] is a simple but powerful framework
deal with the multelass categorization proble
based on the embedding of binary classifiers. Ga
set of N classes, the basis of the ECOC framew
consists of designing a codeword for each of
classes. These codeword’s encode the membe
information of each class for a given binary profl
Arranging the codeword’s as rows of a matrix,
obtain a "codag matrix” Mc, where Mce {-1, O,
1}nex being n the length of the codewor
codifying each class. From the point of view
learning, M is constructed by considering n bin:
problems, each one corresponding to a column @
matrix M.. Each of thesebinary problems (o
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dichotomizers) splits the set of classes in two
partitions (coded by +1 or -1 in Mc according teith
class set membership, or 0 if the class is not
considered by the current binary problem). Then, at
the decoding step, applying the n trained binary
classifiers, a code is obtained for each data paint
the test set. This code is compared to the base
codeword’s of each class defined in the matrix Mc,
and the data point is assigned to the class with th
"closest” codeword. Several decoding strategieehav
been proposed in literature. The reader is refetwed
[7], [12] for a more detailed review. An example o
an ECOC design is described in Fig. 2.

The ECOC designs are independent of the base
classifier applied. They involve error-correcting
properties [9] and have shown to be able to reduce
the bias and variance produced by the learning
algorithm [9]. Because of these reasons, ECOCs have
been widely used to deal with multi-class
categorization problems.

Library Algorithms

The ECOCs library is a Matlab/Octave code under
the open source GPL license (gpl) with the
implementation of the state-of-the-art coding and
decoding ECOC designs. A main function defines the
multi-class data, coding, decoding, and base
classifier. A list of parameters is also included i
order to tune the different strategies. In addition
the implemented coding and decoding designs, which
are described in the following section, the user ca
include his own coding, decoding, and base classifi
as defined in the user guide.

Implemented Coding Design

The ECOC designs of the ECOC library cover the
state-of-the-art of coding strategies, mainly daddn

two main groups: problem-independent approaches,
which do not take into account the distributiontto
data to define the coding matrix, and the problem-
dependent designs, where in-formation of the
particular domain is used to guide the coding desig
Problem- Independent ECOC Design

e One-versus-all [13]:N. dichotomizers are
learnt for N, classes, where each one splits
one class from the rest of classes.

* One-versus-one [10]ln = N«N. - D)/2
dichotomizers are learnt folN. classes,
splitting each possible pair of classes.

» Dense Random [3]:n = 10log Nc
dichotomizers are suggested to be leéont
Nc classes, wherB(-1) = 1 - P(+1), being
P(-1) and P(+1) the probability of the
symbols -1 and +1 to appear, respectively.
Then, from a set of defined rand om
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matrices, the one which maximizes a
decoding measure among all possible rows
of Mc is selected.

e Sparse Random [8]: n = 15 .og Nc
dichotomizers are suggested to be learnt
for Nc classes, where P(0) =1 -P(-1) -
P(+1), defining a set of random matrices
Mc and selecting the one which
maximizes a decoding measure among all
possible rows of Mc.

L‘:ﬂ

| decoding |
T T T T
| X4 X2 X3 Xa |
c,
£C,
Zc
o

. §
C,
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/ b1 di(l:"lfotc;mi:es‘rs Fia \
Figure 2: ECOC design example

ECOC coding design for a 4-class problem. White,
black, and grey positions corresponds to the sysnbol
+1, -1, and 0, respectively.

Once the four binary problems are learnt, at the
decoding step a new test samglis tested by the

n classifiers. Then, the new codewaxd= {x1,
..Xn} is compared with the class codewordGY
..C4}, classifying the new sample by the class
which codeword minimizes the decoding
measure.

Problem — Dependent ECOC Design

« DECOC [11]: problem-dependent design
that usesn = N, — 1 dichotomizers. The
partitions of the problem are learnt by
means of a binary tree structure using
exhaustive search or &FFS criterion.
Finally, each internal node of the tree is
embedded as a columnlify..

 Forest-ECOC [6]: problem-dependent
design that uses = (N, — 1) - T di-
chotomizers, wher& stands for the number
of binary tree structures to be embedded.
This approach extends the variability of the
classifiers of the DECOC design by
including extra dichotomizers.

e ECOC-ONE [12]: problem-dependent
design that use;y = 2 - N, suggested
dichotomizers. A validation sub-set is used
to extend any initial matrix M. and to
increase its generalization by including new
dichotomizerghat focus on difficult to split
c lasses.
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Implemented Decoding Designs

The software comes with a complete set of ECOC
decoding strategies. The notation used refersab th
used in [7]:

Hamming decoding:
HD(x,y;) = ¥ (L-sigr(x' y}))/2 , beingx a test
codeword and yi a codeword from M,
corresponding to class.
Inverse Hamming decoding#iD (X, yi) = max (A
“DT), where A(iy, i) = HD (i1, Vi2), andD is the
vector of Hamming decoding values of the test
codewordx for each of the base code worgls
Euclidean decoding:

2

ED(X,y;) = Z]=1(Xj ~Yj)

Attenuated Euclidean decoding:

: . . 22

AED(x ¥;) =/ Zal v 11X [(x]=y])

Loss-based decoding:
LB(ov) = Z1aL(y . T/ (0)),
Wherep is a test samplé, is a loss function,
and is a real-valued functioh R" —R.

Probabilistic-based decoding:
PD(y;,x) = ~log(7z; O [1...n]: M, }) 0

P(x =M (,])] 1) +K),
Where K is a constant factor that collects the
probability mass dispersed on the invalid codes,
and the probabilit(x! = Mc (i, j)| f)) is estimated
by means of

P(xi =yl | 1) =1/1+ Y/ T +w)

where vectorg and « are obtained by

solving an

optimization problem [20].

Laplacian decoding:

a; +1

LAP(X, V) = =
=g i +5 +K
number of matched positions betweeandy;, f3;
is the number of miss-matches without
considering the positions coded by 0, & an
integer value that codifies the number of classes
considered by the classifier.
Pessimisti@-Density Distribution decoding:

, Where o; is the

Accuracys; : Jyi_gi

W Wiva, B )dV=:—13, where

éﬂi(V,ai,ﬁi):%Vm(l‘V)ﬂaé”i is the -

Density Distribution between a codewaxd
and a class codeworgl for classc, and v
OR:[0]] .
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Loss-Weighted decoding:

LW(p,i) = XMy @, LCY T (0, 1)),
Where
My @, ) =H G )/ Xi4H G ),

HG, ) =1mIméh ()i, ),

-1x'=y,

¢(Xj NP J) = {0,0therwise

m is the number of training samples from

class

C,andp 'k is thek™ sample from clas§,.

Outline of ECOC Algorithm.
Training

1.

Load training data and parameters, i.e., the
length of code L and training class K.

2. Create a L-bit code for the K classes using a
kind of coding algorithm.

3. For each bit, train the base classifier using the
binary class (0 and 1) over the total training
data.

Testing

1. Apply each of the L classifiers to the test
example.

2. Assign the test example the class with the

largest votes.

What makes a good ECOC?

The key problem for ECOC approach is how to
design the coding matriM. Many studies [14, 15,
16, 17, and 18] have shown that the final clagsifie
will have good discriminate ability if the coding
matrix M has the following characteristics:

Characteristic 1: Row separation

Each codeword (a row in the coding mathi)
should be well-separated in Hamming distance
from each of the other code words.

Characteristic 2: Column separation

Each column should be uncorrelated with one
another.

This means that the binary classifiers of different
columns have low correlations among them.
Characteristic 3: Binary classifiers have low

Errors

While for recognition of a large number of
classes, besides classification accuracy, the
efficiency is also quite important. To make a
quick decision, it is expected to evaluate as few
binary classifiers as possible. This requires the
codeword to be efficienti.6. contains a small
number of bits). As explained in [19], for a code
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to be efficient, different bits should be
independent of each other, and each bit has a 50%
chance of being one or zero. In ECOC design,
independent bits can be relaxed as uncorrelated
columns {.e. property 2 mentioned above). And
50% chance of firing for each bit requires.

» Characteristic 4: Balanced column
For each columm, the numbers of 1 andl are
equali.e.,>gM(r,i) =0.
Finding an ECOC satisfying the above
characteristics is a NP-hard problem [20]. So we
can say that for efficient and accurate recognition
of a large number of classes, a good ECOC is
expected to have the following characteristics:

» Efficient - requires a small number of bits.

» Good diversity - the coding matrix has good row

and column separation.
e The resulting binary classifiers are accurate.

What's so good about ECOC?

Improves classification accuracy.

Can be used with many different classifiers.
Commonly used in many areas.

Not prone to over fitting.

Possibly try a variant.

ahrLONE

Practical Advantages of ECOC

1. ltis fast, simple and easy to program

2. ltis flexible — can combine with any learning
algorithm

3. Able to reduce the bias and variance  produced

by the learning algorithm. So it widely

used to deal with multi-class categorization

problems.

Low computational cost.

Outperforms the direct multiclass method.

Can use with data that is textual, numeric,

discrete, etc.

7. General learning scheme - can be used for
various learning tasks.

8. Good generalization.

ook

Disadvantages

1. ECOC is not effective if each individual
codeword is not separated from each of the other
code words with a large Hamming distance.

2. ECOC only succeed if the errors made in the
individual  bit positions are relatively
uncorrelated, so that the numbers of
simultaneous errors in many bit positions is
small. If there are many simultaneous errors, the
ECOC will not able to correct them (Peterson &
Weldon, 1972).

3. ECOC support vector machines are not

http: // www.ijesrt.com
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always superior to one-against-all fuzzypmort
vector machines.
4. One-versus-all schemes are more stable than
other ECOC schemes.
5. Sometimes decomposition of multi-class
problem into multiple binary problems we are
doing in ECOC incurs considerable bias for
centroid classifier, which results in noticeable
degradation of performance for centroid classifier.
6. Finding the optimal ECOC is NP hard.

Comparison of Some ECOC methods.

e One-Versus-All strategy.

The most well-known binary coding strategies aee th
one-versus-all strategy [10], where each class is
discriminated against the rest of classes. In &idghe
one-versus-all ECOC design for a four-class problem
is shown. The white regions of the coding matrix M
correspond to the positions coded by 1 and thekblac
regions to -1. Thus, the code word for clagssd1,-
1,-1,-1}. Each column i of the coding matrix cod#i

a binary problem learned by its corresponding
dichotomizer h For instance, dichotomizey kearns

C, against classes,CGC;, and G, dichotomizer h
learns G against classes,(0C;, and G, etc.

e The Dense Random Strategy.

The dense random strategy [14], where a random
matrix M is generated, maximizing the rows and
columns separability in terms of the Hamming
distance [5].

* One-Versus-One and Random Sparse Strategy.
It was when Allwein et al. [14] introduced a third
symbol (the zero symbol) in the coding process when
the coding step received special attention. This
symbol increases the number of partitions of ckasse
to be considered in a ternary ECOC framework by
allowing some classes to be ignored. Then, the

ternary coding matrix becomeM D{—:LO,l}NX”.In

this case, the symbol zero means that a particular
class is not considered by a certain binary clessif
Thanks to this, strategies such as one-versus-uthe a
random sparse coding [10] can be formulated in the
framework. Fig. b shows the one-versus-one ECOC
configuration for a four-class problem. In this eas
the gray positions correspond to the zero symbol. A
possible sparse random matrix for a four-class
problem is shown in Fig.3 d.

(C) International Journal of Engineering Sciences & Resarch Technolog301-306]
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Figure 3(a) One-versus-all, (b) one-versus-onedéase
random, and (d) sparse random ECOC designs.

e Spectral Error Correcting Output Codefor
Efficient Multiclass Recognition.

Algorithm:

Input: Given the class set e, G, - . ., G}

1. Train a SVM classifiefj for each class pa{c;, G}
2. Construct the similarity grapgh. Set each class
as a vertex and the weigly.

3. Compute the normalized Laplaciasymof G.

4. Compute the eigenvectorg v, . . . ,v, of Lsym
5. Transform eacty, i > 2, to a partition indicator
vectorm;

6. Generate an ECOC matik with code length:
M, = [mzy m3 ey m|+1]

7. Train binary classifiel{sfi}:ﬂto form code

prediction functiorf,(.) = [fy (), &L (), . . ., F()]
7. Search the optimal code lendth

Output:M * andf* (.)

Implementation Details

The ECOCs Library comes with detailed

documentation. A user guide describes the usage of

the software. All the strategies and parametersl use
in the functions and files are described in defHile
user guide also presents examples of variablengetti
and execution, including a demo file. About the
computational complexity, the training and testing

time depends on the data size, coding and decoding

algorithms, as well as the base classifier usethen
ECOC design.

Conclusion
The ternary ECOC when applying a decoding

strategy has not been previously enough analyzed.

http: // www.ijesrt.com

ISSN: 2277-9655

In this paper the different Ecoc coding and other
decoding methods for Error Correcting Output Code
have been studied. Advantages and disadvantages of
some ECOC coding methods are discussed. We
have seen two new decoding strategies that
outperform the traditional decoding strategies when
the percentage of zeros is increased. The validatio
of the decoding strategies at UCI repository
databases gives an idea about the techniquesréhat a
more useful depending of the sparseness of the
ECOC matrixM, where our proposed Pessimistic
Density Probability and Laplacian strategies obtain
the best ranking in the general case. From thidystu
on ECOC one can conclude that compare to other
methods, better performance can be achieved by
using Error Correcting Output Code with above
decoding methods.
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